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Thermodynamics of an integrable model for electrons with 
correlated hopping 

Gerald Bediirftigt and Holger Frahmf 
Institut fii Theomkche Physik, UniveaitFd Hannover. D-30167 Hannover. Germany 

Received 5 April 1995 

Abstract. A new supersymmetric model for elecuons with generalized hopping terms and 
Hubbard interaction on a one-dimensional lattice is salved by means of the Bethe msatz. We 
investigate the phase dia5aq1 of this mode! by studying the ground state and excitations of 
the model as a function of the interaction parameter, electronic density and magnetization. 
Using arguments from conformal field theory we can study the critical exponents describing the 
asymptotic behaviour of correlation functions at long distances. 

1. Introduction 

In recent years, studies of one-dimensional models of electronic systems have been a primary 
source for gaining an understanding of correlation effects in low-dimensional systems. In 
particular, the growing number of exactly soluble models such as the Bethe ansatz integrable 
Hubbard model and supersymmetric t-J models and their extensions have provided new 
insights into the ground-state properties of these systems [l-51. 

Different sources of interaction have been studied in these models: apart from the 
influence of the on-site Coulomb repulsion (which is the main physical motivation leading 
to the Hubbard model) and the antiferromagnetic coupling of electrons leading to spin 
fluctuations (as present in the t-J model) the kinetic energy can been modified to include 
interaction effects. Such bond-charge repulsion terms reflecting the dependence of nearest- 
neighbour hopping amplitudes on the occupation of sites affected were first discussed in 
161. There have been extensive studies of the relevance of such additional interaction terms, 
for example in their relation to the possibility of superconductivity based on electronic 
correlations (see e.g. [7, SI). Furthermore, several exact solutions for one-dimensional 
models of this type have been found (see e.g. [4,5,9]). 

In this paper we consider a new integrable model containing generalized hopping 
integrals that have recently been found [IO, 111. The Hamiltonian is given as 
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In addition to the usual single-particle hopping amplitude to and the on-site Coulomb 
integral U ,  it contains the bond-charge interaction X, an additional coupling % correlating 
hopping amplitudes with the local occupation, and a pair hopping term with amplitude t3. 
In addition, the Hamiltonian contains a coupling to a chemical potential p and magnetic 
field h, controlling particle density and magnetization of the system respectively. 

For later convenience we introduce a different parametrization of the hopping integrals 
by X = to - t l .  2 = to - 2tl + tz .  Studying the two-particle scattering matrix S one finds 
two possible choices of the parameters 9 and U where S satisfies a Yang-Baxter equation 
resulting in candidates for models (1.1) that might be integrable by means of the Bethe 
ansatz: first, choosing to = rl = t2 (which implies X = X = 0) and r3 = 0 the Hamiltonian 
reduces to the well-known Hubbard model [l]. Another family of such models arises fort 

(1.2) 
In an independent approach, the integrability of model (1.1) with (1.2) has been proven 
in the framework of the quantum inverse scattering method where the Hamiltonian has 
been derived from a solution of the quantum Yang-Baxter equation, invariant under a four- 
dimensional representation of gl(211) [lo] which is the symmetry underlying the (Bethe 
ansatz soluble) supersymmetric t-J model. 

Our paper is organized as follows. In the following seaion we shall discuss the 
symmetries of the Hamiltonian (1.1) at the integrable point (1.2). It turns out that there 
arc two physically different regions to be studied corresponding to to > tz  and to  i tz (or 
positive and negative U), respectively. In section 3 the Bethe ansatz equations determining 
the spectrum of the model are derived. In section 4 ground-state properties and the spectrum 
of low-lying excitations at temperature T = 0 are determined, and in section 5 we shall study 
finite-size corrections of the spec” to discuss the asymptotic behaviour of correlation 
functions. In the appendix we discuss the completeness of the solutions obtained from 
these equations for small systems. 

2. Symmetries 

Owing to various symmetries of Hamiltonian (l.l), only the upper sign in relation (1.2) 
with positive to and tz has to be studied. To see this, we first note that the sign of tl is not 
fixed by conditions (1.2). In fact, the unitary transformation 

only has the effect of changing t l  + -4.  

a consequence of (1.2) to and tz necessarily have the same sign!): 
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;U = -t3 =*(to - 12) # 0 (tl)2 = totz. 

Cin -+ Ci , ( l  - 2ni.-,) (2.1) 

A particlehole transformation performs a mapping between to. tz > 0 and to, tz < 0 (as 

(2.2) 
Applying this transform to the Hamiltonian we obtain (the irrelevant change of sign in tl is 
suppressed) 

WO, t ~ ,  U = +.WO - t ~ ) ,  p,  h) + X(-rz, -to, U = 3900 - t d ,  p’, -h) + (p’ - p)L. 

t T, : q, -+ Cin U =f, .L . 

(2.3) 
Here p‘ = 2(to - fz) - p and L is the number of lattice sites. 

The transformation 

Tz : ci, -+ ( - - lYCic U =p, .L (2.4) 
t The special u s e s  12 = qf2 and 12 = 20 have nlready been discussed in [12]. 
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changes the sign of the single-particle dispersion resulting in 

wto3 t 2 ,  U = = W t o  - tz), ,U', h)  + X(-to, -tz, U =&!(to - tz). L4,h). (2.5) 
Applying both TI and Tz the sign in the first equation of (1.2) is reversed (see figure 1): 

%(to3 tz, U = z W 0  -+A), ,U', h) 4 W t z .  to, U = ~ 2 0 2  -to), ,U'', -h)  + ( ~ 4 '  - /AIL. 
(2.6) 

Hence, tz and to are interchanged and at the same time the electronic density is changed 
from ne to 2 -ne. As will be seen later the Bethe ansatz solution in the region to, tz z 0 
extends throughout the interval 0 < ne < 2. Hence it is sufficient to consider the model 
with U = +2(t0 - tz )  in this region. 

+ 

Figure 1. Range of parameters tu. 22 for which model (1.1) is integrable as a consequence of 
(1.2) for U = + Z ( c - t z )  (left) and V = -2(q,-h) (right). The dots mark the model introduced 
in [12]. 

As already mentioned, the model can be constructed in the framework of the quantum 
inverse scattering method based on an irreducible representation of the algebra gl(211). This 
is reflected in additional invariances of the Hamiltonian: apart from the SU(2)  spin aid 
number operator 

(2.7) 
which commute with the Hamiltonian for vanishing magnetic field, there are four additional 
supersymmetric generators [lo], namely 

and their Hermitean conjugates Qk satisfying commutation relations 

{ Q r , Q r ) = o  Q: = 0 IX, Qa] = (p - 2to + uh)Q,. (2.9) 
Fixing the potentials to p = 2t0, h = 0 one obtains the supersymmetric model of [IO] (up 
to the unitary transformation TlTz). 

It is important to identify the full symmetry of the model since it is well known 
that the Bethe ansatz states are all highest-weight states in this algebra and, hence, not 
complete [13], i.e. S+IYB& = 0 = Q n l Y ~ e c ~ ) .  Only after complementing the Bethe 
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ansatz states with those obtained by successive application of S* and QL can the complete 
set of eigenfunctions be found. We shall come back to this question in the appendiw. Note 
that as a consequence of (2.9) the number of particles in the states belonging to one gl(211) 
multiplet range from the number NBA in the Bethe ansatz state to NBA + 2. Hence, in 
the thermodynamic limit investigated below particle densities 0 < ne < 2 can be studied 
directly. 

G Bediirftig and H Frahm 

3. Bethe ansatz solution in the thermodynamic limit 

Despite the derivation of Hamiltonian (1.1) in the framework of the quantum inverse 
scattering method, the spectrum of the model (which is obtainable in principle by means of 
the algebraic Bethe ansatz) has not been found in [lo]. The difficulty here is the complicated 
representation theory for the superalgebra gl(211). 

In 1141 the algebraic Bethe ansatz for lattice models with underlying q-deformed 
superalgebra Uq(osp(2[2)) (reducing to the model studied here in the rational q + 1 limit) 
has been considered. Although the fusion procedure necessary to diagonalize the model 
works for special choices of the typical four-dimensional representations only, a conjecture 
is given for the general case. 

On the other hand, it is straightforward to determine the spectrum using the coordinate 
Bethe ansatz: for models possessing internal symmetries, like the one considered here, the 
Schrodinger equation is solved with the ansatz [15] 

where Q = {ql,. . . , qN} and P = (PI, .  . . , PN} are permutations of the integers (1, . . . , N }  
and Q is chosen such that Xp = (x4,  < xq2 c . . . < x q N ] .  The coefficients A ( P l Q )  from 
regions other than XQ are connected with each other by elements of the two-particle S- 
matrix 

(PIZ is a spin permutation operator). Here the charge rapidities Oj are related to the 
single-particle quasi-momenta kj by ?(k)  = 4 tan(k/Z), and the dependence on the system 
parameters (1.2) is incorporated in the parameter c = (to - t z ) / t z  (varying in the intervals 
-1 < c < 0 and 0 < c c 00). The A(P I Q) are determined in a second Bethe ansatz for 
an inhomogeneous six-vertex model resulting in the Bethe ansatz equations (BAE) 

- i/Z +j - A. + ic/2 
j = 1,. . . , N e  

N. -+j+ic/2 ~ A,-Ap+ic n A, - hp - ic j=l  n A, - +j - ic/2 
01 = 1,  ..., M. (3.3) - _  - 

p=1 

The length L of the system is assumed to be even and Ne and M are the numbers of 
electrons and spin-J electrons, respectively. Given a solution of (3.3) the eigenvalue of 
(1.1) in the corresponding state is 

Ne 1 
E = ( 2 f o - p ) N e - - h  --M -toe- (: ) j=1 +;+:' (3.4) 
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Comparing equations (3.3) and (3.4) with the spectrum conjectured in equations (71). (72) 
and (75) of 1141 for Q -+ 1 we find that they do indeed coincide up to the normalization 
of the energies if one identifies c = l/(b - i) (6 being the continuous label of the typical 
four-dimensional osp(212) representation [b,  $1). 

Solving (3.3), one has to distinguish the two different regions c 5 0 and c < 0 as the 
character of the t9 - A solutions in these two cases is completely different. Note that the 
sign of the on-site Coulomb coupling U is the same as that of c because of (1.2). Hence 
the situation is very similar to the Hubbard model. We introduce some functions and their 
Fourier transforms that will be used in the following (y > 0): 

1 - - 1 -  1 
s y ( x )  = 1- dke-ik2cosh(yk/2) 2ycosh(5x/y) (3.5) 

Ry(x)  = (a, * sy)(x) = 

where (a *b ) (x )  = 

3.1. Repulsive case (c > 0) 

In this case the solutions of (3.3) consist of real while the spin rapidities are known to 
be arranged in bound states of uniformly spaced sets of complex A,, the so called n-strings: 

A ~ ' = A ~ + i ( n + 1 - 2 j ) c / 2  j = 1 , 2  ,..., n. (3.6) 
In the thermodynamic limit (L + 00 with particle density N J L  and magnetization MIL 
being fixed) the solutions of the BAE (3.3) can be described in terms of densities p(t9) for 
charge rapidities and ph(t9) for the corresponding holes. Similarly, one introduces density 
distributions un (Un,h) for the n-strings of spin rapidities (and corresponding holes). Using 
standard procedures one obtains the following system of coupled linear integral equations 
from the BAE (3.3): 

dz a(x  -z)b(z) denotes a convolution and @ is the digamma function. 

P + Ph a1 f Rc * P - Sc * u1.h 
Ul f U1.h Sc * (U2.h + p )  (3.7) 
un + %.h = Sc * (un+l ,h  f on-1.h) 2 2 

The intervals in which the densities are non-vanishing depend on the state considered. The 
particle density and magnetization are related to p and U" through 

m Ne 
L 

ne = - = [, dt9 p(t9) 

The energy density follows from (3.4): 
m E 

e=- - (Zro- I -L)n , -hm, -2n to  drPal(rP)p(8). (3.8) 

The equilibrium distribution functions p and un have to be determined by minimization 
of the free-energy functional, 3 = E - TS, with the combinatorical entropy S of a particle 
and hole densities 6(A) and &(A) given by [16] 

L 1, 

(3.9) 
S8 7 = [, d l  ((8 f 8,) h(8  + &) - 8 h(8) - ah In(&)). 
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Introducing the functions 
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(3.10) 

and considering p and a,,& as independent functions we obtain by variation of F the 
following nonlinear integral equations for the functions E ~ :  

E ,  = 2to - p - 2irtoal + Ts, In(n(q)) + T R ,  * ln(n(-&,)) 
&l = -Ts, *In(&)) + Ts,  * ln(n(-8,)) 

E, = -Ts, *.(ln(n(e,+I)) + In(n(.%d)) 
(3.11) 

n 2 2 
with the distribution function 

n ( E )  = (1 + ee'')-l. (3.12) 

Equations (3.11) have to be solved with the asymptotic boundary condition 
En lim - = h. 

n-m n 
The free-energy density is given by 

(3.13) 

(3.14) 

This shows that the functions E, are to be identified as renormalized ('dressed') energies of 
the singleparticle excitations in the system. 

3.2. Aftructive case (-1 < c < 0) 

In this regime one has-in addition to the real charge rapidities and strings of spin rapidities 
considered in the repulsive case-pairs of complex conjugated 0; coupled to a real A j  as 
solutions of the BAE (3.3): 

(3.15) 

Note that for c + -1, equation (3.3) would coincide with the BAE of the t-J model 
obtained in [3]; however, this value is out of the range accessible for this model. Following 
the same procedure as in the repulsive case we obtain in the thermodynamic limit 

ilcl e* = A! z t  -. 
" 2  

P + P h  = slcl * 0,: f slcl * c1.K 

U' + ~i 
cl + 0 l . h  =SIC[ * ( r 2 . h  + P )  

~ i - l c l  + R1.l * 0; - sic1 * P 

u n  + 0 n . h  slcl * (cn+I;h f Un-1.h) n > 2 (3.16) 

where U'@) and crL(A) are the distribution functions for the paired rapidities (3.15) and 
corresponding holes. 

Particle density and magnetization of the state corresponding to a solution of (3.16) are 
given by 

n, =/-d@p(U)+2/=dAd(A) m 

-m 
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and the energy density is 

(3.17) 

Minimizing the free energy (with U; as an additional independent function) and defining 
the dressed energy of the paired rapidities as 

E&) = T In (2) (3.18) 

4. Ground state and exatations at T= 0 

We now want to examine properties of the zero-temperature ground state for the two cases. 
In this limit the distribution function n (3.12) in the thermodynamic BAE reduces to 

~~ 

rim T h(n(8) )  = -8+ (4.1) 
T-0 

where 6+ > 0 and 8- < 0 are the positive and negative parts of the function 8 = S+ + 8-, 
respectively. At the same time it is clear that the ground-state configuration corresponds to 
the filling of all states with negative dressed energy E ~ .  

4.1. Repulsive case (c > 0) 

From (3.11) we find that en,l(h) z 0 for all h. Using the asymptotic condition (3.13) we 
obtain from (3.11) with (4.1) 

) + ( z  :12.) * (2) . (4.2) 
(&) = (2to - !-L - 2 ~ t o a 1  - h / 2  

h 

As in 1171 one can prove that ~ ~ ( 0 )  and EI  (A) are monotonically increasing functions of 
101 and 111 and, consequently, they are negative in the intervals [-e, Q] and [ -B ,  B]. 
For h = 0 two possible ground-state configurations are to be considered the ferromagnetic 
state ( M  = 0 for n, < 1 and M = Ne - L for n, 1) and the antiferromagnetic state 
( M  = Ne/2). The energy of the ferromagnetic state at fixed density ne is simply 

for n, < 1 

for ne > 1. 

1 .  - sinma. 
(4.3) eFM = -20 1 1 ( 1 .  - sinme - c(n. - 1) 

I + c  ?c 
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For the antiferromagnetic state one obtains from (3.7) that it corresponds to a filled band 
of one-strings, i.e. B = 00. Hence 61 can be eliminated by Fourier transform and (3.7) 
simplifies to 

G Bediirjlig and H Frahm 

p(6’)  = ~ l ( 1 9 )  + dB’R,(B - C“)p(B’). (4.4) J_; 
Varying Q one obtains any filling between ne = 0 and ne = 2. For small Q, (4.4) can be 
solved by iteration and for Q + CO by using Wiener-Hopf techniques [18] with the result 

/. 
/ 

I’ - 
I 

/ 
/ 

4Q In2 7 + 8 x Q z  + O(Q3) for Q + 0 

for Q + CO. 
(4.5) M Q )  2 - 

(1 + c z )  + 0 (6) ZQ 

In the lowdensity limit we find that the ground state of the system is indeed 
antiferromagnetic. The energy difference to (4.3) is 

In figure 2 we present numerical data for the dependence of the (antiferromagnetic) ground- 
state energy of the system as compared to the ferromagnetic case for various values of the 
parameter ct. 

eft0 

2.0 

1.0 

0 .0  

-1.0 

0-m 

c-1 

e-0 

I 
2.0 

-2.0 ‘ 
0 . 0  0.5 1.0 1.5 

r. 

Figure 2. Energy of the antiferromagnetic ground state of the system (1.1) plotted against 
elecvOn density in the repulsive regime for various values of the reduced coupling constant e. 
For comparison, the energy of the ferromagnetic state (4.3) is also included. Note, that for 
c + bo the ferra and antifeiromagnetic states are degenerate. 

In the free-fermion limit c + 0, (4.4) simplifies to 

(4.7) 

t In [I21 thc ground state is claimed to be ferromagnetic in this regime for densities n. < 1. As is c lw from 
equation (4.6). this is not correct. 
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and the ground-state energy is the expected result for this system 

(4.8) 

In the strong coupling limit c + 03 corresponding to t1 = tz = 0, t3 = -to, U = 2t0, the 
ground state is degenerate with the ferromagnetic state (4.3). 

There are two types of excitation that are to be considered in the low-energy sector: first, 
there are objects carrying charge ('holons') corresponding to particle- or hole-like excitations 
in the ground-state configuration of charge rapidities with energy IE(O) I. Furthermore, there 
are spin-canying objects ('spinons') corresponding to holes in the distribution of real spin 
rapidities. From (4.2) their energy is found to be 

(4.9) 

The physical excitations (for even particle number Ne) are even numbers of these objects 
forming a continuum of spin waves without gap. The energies of the spin rapidity strings 
of length n > 1 vanish. 

Increasing the magnetic field the magnetization grows until it reaches its saturation value 
f at the critical field h,. For h = h, the interval for the h integration vanishes, i.e. B = 0 
(corresponding to E I ( A  = 0) = 0). For 0 <'ne < 1 we find 

. 

(4.10) 
8to C(4Q2 + 1) ar~tan(2Q) - (4Q2 + c2) ~ c t m ( 2 Q / c )  

h, = n 
(c* - 1)(4Qz + 1 )  

with Q = 4 tan(anJ2). In the limiting cases considered above, this expression becomes 

hnh,=O lim h, = 4t2 lim h, = 4t0 sin2 (7). (4.11) 
Q+O Q+m C-tO 

4.2. Attractive case (-1 < c < 0) 

Due to (3.19) the dressed energies of the spin rapidities ~ ~ > l ( h )  are always positive. 
Performing the limit T + 0 in (3.19) with equations (4.1) and (3.13) we obtain 

(4.12) 

As in the repulsive regime one can prove that ~ ~ ( 0 )  and &,,(A) are monotonically increasing 
functions of the modulus of their arguments; hence, they are negative in the regions [-e, Q] 
and [ - E ,  E ] .  Again we find that the ground state of the system is antiferromagnetic for 
h = 0 (see figure 3). In this regime the ground-state configuration consists of paired 
rapidities only (Q = 0). Their density is obtained from (3.16) which simplifies to 

U'@)  = ~ I - I ~ I ( A )  + ~ I + I C I ( ~ )  - dpazlcl0 - @)G'(LL). (4.13) L 
Again, this is the ground-state configuration for any filling 0 < ne < 2 since 

' (4.14) 



4462 G Bediilftig and H Frahm 
e& 

C--0.1 

- 4 . 5  

-4.0 - 

-6.0 - 

-8.0 - 0 - 4 . 8  

-10.0 
0.0 0.5 1.0 1.5 2.0 

n. 

Figure 3. Energy of the antiferromagnetic ground state of the system (1.1) plotted agajnst 
electron density in the amactive regime for various values of the reduced coupling constant e. 

For c + 0, (4.13) simplifies to 
B 

U’@) 2 a l  (A) - dpLS(A- p ) ~ ‘ ( p )  (4.15) S_, 
and we obtain for the ground-state energy (4.8) of the free-fermion system. 

charge rapidities: 
From equation (4.12) we obtain the dressed energy for excitations corresponding to real 

(4.16) 

Note that for vanishing magnetic field there is a gap A,(n.) = E,(O) for the creation of 
unpaired electrons. A, is a monotonically falling function of ne with its maximum at 
A,@) = 4tocz/(l - c2) > 0 (see figure 4). The only massless excitations in this regime are 
charge-density waves corresponding to excitations within the band E ~ ( A ) .  

In an external magnetic field the nature of the excitations in the system change: for 
h,i = ZAc the gap for charge excitations closes and for hc2 the system undergoes a 
transition into the saturated ferromagnetic ground state. The latter corresponds to B = 0 
(or, equivalently, ~ ~ ( 0 )  = 0). For 0 < n, < 1 we find 

8t0c2 8to (4B’ + c2) arctan(ZB/[cl) - lc1(4B2 + 1) arctan(2B) 
hc2 = - +- I-c’ R 

with B = $ tan(an,/2). We obtain the limiting cases 

(4.17) 
(c2 - 1)(4B2 + 1) 

an 
lim heZ = 4t2 lim h,2 = 2Ac(O) rim h,* = 4b sin’ (y) 

8-0 C - t O  
(4.18) 

The non-vanishing of hd in the low density limit is a direct consequence of the gap of E,. 

5. Finite size corrections and critical exponents 

We now wish to study the finite size corrections of the spectrum in order to discuss the 
asymptotic behaviour of correlation functions. Again, the repulsive and the attractive case 
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. 
1% 

8.0 , . 

.. 
4 

Figure 4. Energy gap for the mation of unpaired electrons as a function of the density of 
particles for several values of the parameter c. 

are completely different and have to be treated separately. 

5.1. Repulsive case (c > 0) 

As found in section 4.1, for T = 0 the ground state and low-lying excitations are obtained 
from solutions of the BAB (3.3) with real 0's and A'S. Hence, we have the same situation 
as in the repulsive Hubbard model and following the procedure in [I91 we obtain the finite 
size corrections of the ground-state energy as 

where U, and U, are the Fermi velocities of charge and spin density waves, respectively: 

Similarly the energies and momenta of the low-lying excitations are given by 

WAN, D )  - Leo = I [%(A,' +A;) + %(AT + A;)] + 
P ( A N ,  D )  - Po = -[A: - A; + A t  - A;] + ZD,PF.? + 2(D, + D,>,)P,,, 

with the conformal dimensions 

O(i) 

k 

ZIT 

L (5.3) 

and the Fermi momenta 'PF,~(,) = $r(n,fZm,) of spin-up (down) electrons. The elements 
of the two-component vectors A N  and D characterize the excited state: AN has integer 
components denoting the change of the number of electrons and down spins with respect 
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to the ground state. D, and D,? describe the deviations from the symmetric ground-state 
distributions. They are integers or half-odd integers depending on the parities of AN, and 
AN, : 

G Beduqiig and H Frahm 

mod 1. (5.5) 
A Nc mod 1 D, = ANc + AN, 

2 
0, = 

The matrix 

parametrizing the conformal dimensions (5.4) is given in terms of the so called dressed 
charge matrix which satisfies a linear integral equation similar to (4.2) for the dressed 
energies: 

As shown above, the ground state at vanishing magnetic field corresponds to B = 03 
and with the aid of the Wiener-Hopf method 1191 (5.6) simplifies to 

where cc is defined as the solution of the following scalar integral equation 
Q 

M O )  = 1 +IQ do’ M O  - +’)EdO’). (5.9) 

As for the density, one can solve (5.9) near Q = 0 and Q = 03 with the result 

Hence the range of variation for the exponents determining the long distance asymptotics of 
the equal time correlators is the same as in the Hubbard and t-J models [20,21]. Introducing 
0 = 2&Q) the singularity of the momentum distribution function at the Fermi point is 
found to be 

n,,(k) - /” ctx e-’kx(c,.,(t = o+)co.,(t = 0)) 

(5.11) 

which shows the expected 

Similarly, we obtain for the density-density and singlet-pair correlation functions 

1 8 1  
e 16 2 

rxsgn(k -PF)lk-PFl” U = -+- - - 

with a variation of the exponent U in the interval 0 < U < 
Luttinger liquid behaviour of this system. 

(pF.t = pF.I e pF) 
G n n ( ~ )  = ( @ x t  + nx~)(no? +no&)) 

-, fl; + A I  COS(~?FX + PI )X- ( ‘+ ’ ’~ )  + A2 cos(4PFX + R ) X *  f AIX-’ (5.12) 

G“)(X) = ( C x + l ~ t C ~ , S c ~ , ~ c o , f )  t - A COS(~’PFX 4- $7)X-(4’‘fe’4). P 
The leading order of the densityaensity correlator is given by the A I  term with 312 c 
1 + 6’14 -= 2. Comparing this with the leading term of the singlet-pair correlator 
512 > 4/0 + 0/4 > 2 w e  see that density fluctuations are dominant. 
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In figure 5 we show lines of constant L(Q) (hence identical critical behaviour) in the 
ne-c parameter plane. Note that the strong coupling result &(e) = 1 is found for less than 
half filling only. Beyond half filling the density dependence of the dressed charge is, for 
c =~m, 

for ne --f 1 

for ne + 2. 
L = ne AIJ - %(z - ne)) 
m 

c 

0.0 

(5.13) 

Figure 5. Contours of constant L(Q) (and hence identical criticill exponents) in the a.-e 
parameter plane of the repulsive model. CC(Q)  varies between 1 (at low densities) and 6 (the 
free femionic case) for finite C. 

As in [22] for the Hubbard model, this analysis of the critical behaviour can be extended 
to the case of magnetic fields. For small fields h i h, one has to expect logarithmic 
singularities in the exponents, while for fields h > h, the ground state is a saturated 
ferromagnetic one and spin density waves become massive giving a scalar dressed charge 
instead of (5.8). 

5.2. Attractive case c > 0 

As discussed in section 4.2 for T = 0 and h < h,, there is only one branch of massless 
excitations within the band E p t .  The finite size corrections to the energies of the low-lying 
excitations are given by 

(5.14) 
2n 
L P(ANp, D p )  - Po = -(A - A;) -k 2 D p P ~  

with 

(5.15) 

t In the analysis of the asymptotics of correlation functions for the model with c = -112 in p3] the existence of 
a second branch of massless excitations m the band of real charge rapidities cc is assumed. However. as shown 
in section 4.1 these have a gap for h < h,, , Hence the results in [23] are incorrect. 
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and charge-density wave velocity up = $(Q)/(Zzd(Q)). The dressed charge e,, is given 

G Bedu@ig and H Frahm 

by 
B e,,@) = 1 - %BdA'a~lel(A - A%&'). (5.16) 

With the same techniques as used above we obtain 

for B + 0 

for B + W. 

(5.17) 

. .  
The leading terms in the asymptotics of the equal time correlators as a function of 
B = Zf,2(B) are the same as in the (attractive) Hubbard model [241: 

(5.18). 

Comparing the leading exponents of these W O  correlators we see that the correlation of 
pairs (1/2 < l/e < 1) overwhelms the density-density correlator (2 > B > 1) for arbitrary 
ne. Hence, as in the amactive Hubbard model [24] we can conclude that the particles 
are confined in pairs which is reflected in the structure of the Bethe ansatz ground-state 
configuration. 

In figure 6 we show lines in the n,-lc[ parameter plane with identical critical behaviour. 

Figure 6. Contours of constant &(Q) (and hence identical critical exponents) in the n.-lcl 
parameter plane of the attractive model at small magnetic fields h < h,!. !,,(e) varies between 
I and l / f i  for any finite c. 

For h > h,, , charge and spin excitations are massless and the dressed charge is a 2 x 2 
matrix as in .the repulsive case. The same situation occurs in the attractive Hubbard model 
1241. 
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Appendix. Completeness of the Bethe ansatz states 

As mentioned above, the Bcthc ansatz states do not form the complete set of eigenstates of 
system (1.1) but are the highest-wei&t states of the gl(211) superalgebra. Complementing 
the Bethe ansatz states with~those obtained by the action of the gl(211) shift operators one 
obtains additional eigenstates. The completeness of this extended Bethe ansatz has been 
proven (based on a string hypothesis (3.6) for the solutions of the BAE) for some models such 
as the the spin-4 Heisenberg chain, the supersymmetric r-J model and the Hubbard model 
[13,25,26]. In this appendix we present the study of the completeness for the two-site 
system together with some remarks on L > 4. 

New eigenstates of the system are generated from the Bethe ansatz states by acting 
with the total spin operators S-, S+ and the supersymmehy generators Q,,, Q!,. As a 
consequence of the anticommutativity of the latter ~(2.9) the resulting multiplet contains 
states in the Ne-, (Ne  + 1)- and (Ne + Z)-particle sectors which are (we suppress the spin- 
multiplicity) 

As shown above, the ground state of the model for afLxed number of particles is always a 
spin singlet. As a consequence of (.I) it is a member of a gl(211) quartet, the same situation 
as in the related supersymmetric r-J model [25]. 

Solving the BAE (3.3) in the simplest case of the L = 2 system we obtain three regular 
Bethe ansatz states with energy E; (at the supersymmetric point !A = 2t0, h = 0): 

tl IW = IN, = 2, M = 1) M 19~~) - I+$?) + ;(IW +l@od) 

with 

E3 = -WO +h) 

(-4.3) l*",n,) = c~.m,cl.,lo) 1+2020) = C*.TCI.JIO) t t  W O Z )  = cd,c:.rlo). 

Regular Bethe ansatz states are those corresponding to solutions of (3.3) withfinite 19 and 
h [13,26]. 

The one- and two-particle descendents of [@I)  are found to be the momentum R spin- 
doublet Ik = R, U) and the spin-singlet 

Analogously we find the descendents of 1+2) to be the following (degenerate) triplet and 
singlet states in the two-particle sector: 

I h )  Ill.02) - 111.20) ( A 3  
and the doublet of zero-momentum single-hole states lkg = 0, U ) .  Finally, I@s) leads to the 
doublet of momen& R hole states lkh = x ,  U )  and the completely filled state l@zz). 

Hence the Bethe ansatz extended by means of the supersymmehy does indeed give the 
complete spectrum of states on the two-site lattice. Note that 1@3) is always the ground 
state of the two-particle sector for the range of parameters considered here. The difference 
between the repulsive and attractive regime is the larger amplitude of the states containing 
local pairs in the latter. 
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For general L, regular Bethe ansatz states will exist for particle numbers up to 2(L - 1). 
Considering L = 4 as an example one has to find 35 regular solutions of the BAE to generate 
a complete set of eigenstates. Four of these are states with Ne z L. 
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